Application of Chitosan and Chinese Lemon Extract (Citrus Mitis) Based Edible Coating on Tuna Fillet
Nini Munirah Renur,
Yadi Haryadi,
Emmy Darmawati,
Imanuel Berly Delvis Kapelle
Issue:
Volume 4, Issue 2, March 2016
Pages:
29-33
Received:
17 December 2015
Accepted:
6 January 2016
Published:
2 March 2016
Abstract: Fish is a food that is very susceptible to degradation. One way to maintain the freshness of the fish is by using packaging edible coating with natural ingredients. This study used that chitosan and chienese lemon extract (Citrus mitis) as the natural agent in edible coating production. The purpose of this study was to examine the application of edible coating made from chitosan and citrus mitis on tuna fillets and to test the application of edible coating at each concentration, to get the best concentration based on pH and Total Bacterial Count (TBC). Tuna fillet with a size of 3 x 5 cm with a thickness of 1 cm was made edible coating by immersion system. Furthermore, edible coating made from chitosan in the concentrations of 1–4% was made by acetic acid solvent of 1% at a temperature of 50°C for 60 min, followed by the addition of 0.5% glycerol. On the other hand, edible coating made from citrus mitis in the concentration of 10-40% was made by jelly solution of 1% at 50°C for 60 min, followed by adding 0.5% of glycerol. Based on this study, it was understood that the best concentration for edible coating made from chitosan and citrus mitis was respectively 1% (pH 5.67; TBC 4.93) and 40% (pH 5.32; TBC 6.23). Furthermore it was known that the higher acid concentration, the better edible coating was obtained.
Abstract: Fish is a food that is very susceptible to degradation. One way to maintain the freshness of the fish is by using packaging edible coating with natural ingredients. This study used that chitosan and chienese lemon extract (Citrus mitis) as the natural agent in edible coating production. The purpose of this study was to examine the application of ed...
Show More
Effect of the Traditional Cooking Methods (Boiling and Roasting) on the Nutritional Profile of Quality Protein Maize
Omenna Emmanuel Chukwuma,
Olanipekun Oyeyoyin Taiwo,
Udouso Victory Boniface
Issue:
Volume 4, Issue 2, March 2016
Pages:
34-40
Received:
12 January 2016
Accepted:
3 February 2016
Published:
11 May 2016
Abstract: Freshly harvested yellow quality protein maize (QPM) was subjected to boiling and roasting. Proximate, nutrients and anti-nutrients analyses were carried out to investigate the effects of these treatments on the nutritional compositions and anti-nutrients content of quality protein maize. The result showed that the roasted quality protein maize (RQPM) had significantly higher crude proteins, crude fat, crude fiber, ash and carbohydrate value than the boiled quality protein maize (BQPM) and the raw (CQPM). There was an increased in energy value of roasted samples (355.41kcal/100g) whereas boiled samples recorded decreased energy value (73.04 kcal/100g). Roasting had significantly increased the level of Na, K, P, Ca and Mg while boiling slightly decreased the amount of these macro elements compared with the raw (CQPM). There was no significant difference in potassium content of all the samples. Roasted quality protein maize had higher amount of the micro elements (iron, zinc, copper, manganese, and selenium) than BQPM and CQPM. However, boiling had significantly reduced phytate content by 9.62% while roasting had 5.84% phytate reduction when compared with the raw. BQPM had significantly reduced oxalate by 7.03% while RQPM had 3.13% oxalate reduction. Both cooking methods (boiling and roasting) had similar reduction (50%) of tannin. The results demonstrated that boiling was more effective in the reduction of anti-nutritional factors than roasting. Processing had significant impact on the fat soluble vitamins of quality protein maize. RQPM had the highest vitamin A with 88.24% increment whereas BQPM had 8.78% reduction of vitamin A. Similar trend was observed in vitamin E. The effect of processing on the beta –carotene of the quality protein maize was in the increasing order: BQPM < CQPM < RQPM. The superiority of quality protein maize has been demonstrated by its high content of lysine (3.04% for RQPM, 1.73% for BQPM and 2.11% for raw, CQPM) and methionine content ranges from 1.27 to 2.01% for boiled and roasted samples respectively. Roasting enhanced the nutritional values of quality protein maize by increasing the lysine and methionine content. These two essential amino acids are limited in other cereal crops. Boiling appeared to have experienced nutrients loss when compared with others. Therefore, nutritional values of quality protein maize could be harnessed by roasting to meet the nutritional needs of humans and may be used in formulation of various foods.
Abstract: Freshly harvested yellow quality protein maize (QPM) was subjected to boiling and roasting. Proximate, nutrients and anti-nutrients analyses were carried out to investigate the effects of these treatments on the nutritional compositions and anti-nutrients content of quality protein maize. The result showed that the roasted quality protein maize (RQ...
Show More